国际皮肤性病学杂志    2003 29 (3): 189-192   ISSN: 2096-5540  CN: 32-1880/R  

生殖器疱疹疫苗的研究进展
王书崎, 尹跃平
中国医学科学院、中国协和医科大学皮肤病研究所, 南京210042
收稿日期 2003-01-03  修回日期 null  网络版发布日期 null
参考文献  [1] Corey L, Handsfield HH. Genital herpes and public health:addressing a global problem. JAMA, 2000, 283(6):791-794.
[2] Yeung-Yue KA, Brentjens MH, Lee PC,et al. Herpes simplex viruses 1 and 2. Dermatol Clin, 2002, 20(2):249-266.
[3] Mbizvo EM, Msuya Sia E, Stray-Pedersen B,et al. Association of herpes simplex virus type 2 with the human immunodeficiency virus among urban women in Zimbabwe. Int J STD AIDS, 2002, 13 (5):343-348.
[4] Berustein DI, Stanberry LR. Herpes simplex virus vaccines. Vaccine,1999, 17(13-14):1681-1689.
[5] Stanberry LR, Cunningham AL, Mindel A, et al. Prospects for control of herpes simplex virus disease through immunization. Clin Infect Dis, 2000, 30(3):549-566.
[6] Morrison LA. Vaccines against genital herpes:progress and limitations. Drugs, 2002, 62(8):1119-1129.
[7] Heineman TC, Connelly BL, Bourne N,et al. Immunization with recombinant varieella-zoster virus expressing herpes simplex virus type 2glycoprotein D reduces the severity of genital herpes in guinea pigs. J Virol, 1995, 69(12):8109-8113.
[8] Manning WC, Paliard X, Zhou S, et al. Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2glycoproteins B and D. J Virol, 1997, 71 (10):7960-7962.
[9] Smith CC, Peng T, Kulka M, et al. The PK domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10)is required for immediate-early gene expression and virus growth. J Virol, 1998, 72(11):9131-9141.
[10] Aurelian L, Kokuba H, Smith CC. Vaccine potential of a herpes simplex virus type 2 mutant deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10). Vaccine, 1999, 17 (15-16):1951-1963.
[11] Wachsman M, Kulka M, Smith CC,et al. A growth and latency compromised herpes simplex virus type 2 mutant (ICP10DeltaPK) has prophylactic and therapeutic protective activity in guinea pigs. Vaccine, 2001, 19(15-16):1879-1890.
[12] Da Costa XJ, Bourne N, Stanberry LR, et al. Construction and characterization of a replication-defective herpes simplex virus 2 ICP8 mutant strain and its use in immunization studies in a guinea pig model of genital disease. Virology, 1997, 232(1):1-12.
[13] Da Costa X, Kramer MF, Zhu J, et al. Construction, phenotypic analysis, and immunogenicity of a UL5/UL29 double deletion mutant of herpes simplex virus 2. J Virol, 2000, 74(17):7963-7971.
[14] Geiss BJ, Smith TJ, Leib DA,et al. Disruption of virion host shutoff activity improves the immunogenicity and protective capacity of a replication-incompetent herpes simplex virus type 1 vaccine strain. J Virol, 2000, 74(23):11137-11144.
[15] Boursnell ME, Entwisle C, Blakeley D, et al. A genetically inactivated herpes simplex virus type 2 (HSV-2) vaccine provides effective protection against prinary and recurrent HSV-2 disease. J Infect Dis, 1997, 175(1):16-25.
[16] Corey L, Langenberg AG, Ashley R,et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection:two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA,1999, 282(4):331-340.
[17] Stanberry LR, Spruance SL, Cunningham AL, et al. Glycoprotein-Dadjuvant vaccine to prevent genital herpes. N Engl J Med, 2002, 347(21):1652-1661.
[18] Simms JR, Heath AW, Jennings R. Use of herpes simplex virus (HSV) type 1 ISCOMS 703 vaccine for prophylactic and therapeutic treatment of primary and recurrent HSV-2 infection in guinea pigs. J Infect Dis, 2000, 181 (4):1240-1248.
[19] Gierynska M, Kumaraguru U, Eo SK, et al. Induction of CD8 T-cellspecific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes. J Virol, 2002, 76(13):6568-6576.
[20] Nass PH, Elkins KL, Weir JP. Protective immunity against herpes simplex virus generated by DNA vaccination compared to natural infection. Vaccine, 2001, 19 (11-12):1538-1546.
[21] Sin JI, Kim JJ, Aruold RL, et al. IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model:IL-12 enhances Thl-type CD4 +T cell-mediated protective immunity against herpes simplex virus-2challenge. J Immunol, 1999, 162 (5):2912-2921.
[22] Sin J, Kim JJ, Paehuk C, et al. DNA vaccines encoding intedeukin-8 and RANTES enhance antigen-specific Th1-type CD4 (+) Tcell-mediated protective immunity against herpes simplex virus type 2in vivo. J Virol, 2000, 74(23):11173-11180.
[23] Strasser JE, Arnold RL, Pachuk C,et al. Herpes simplex virus DNA vaccine efficacy:effect of glycoprotein D plasmid constructs. J Infect Dis, 2000, 182(5):1304-1310.
[24] Sin JI, Kim JJ, Zhang D, et al. Modulation of cellular responses by plasmid CD40L:CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4 + T eell-mediatod protective immunity against herpes simplex virus type 2 in vivo. Hum Gene Ther, 2001,12(9):1091-1102.
[25] Fl inverted question marko J, Tisminetzky S, Baralle F. Modulation of the immune response to DNA vaccine by co-delivery of costimulatory molecules. Immunology, 2000, 100(2):259-267.
[26] Eo SK, Lee S, Kumaraguru U,et al. Immunopotentiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands. Vaccine, 2001, 19(32):4685-4693.

通讯作者: